Measurement Equivalence with Categorical Indicators

Thresholds as a First-Order Measurement Model

Terrence D. Jorgensen

Last updated: 18 June 2020

Overview

The Common Factor Model

Gotta start a presentation somewhere ...

Figure 1: 2-factor CFA, 3 indicators per factor.

Outline

- Review identification constraints in CFA models
- Trading identification constraints for invariance constraints
- Adding probit link to CFA
- Threshold model as measurement model for latent item-response
- Numerical examples with single indicators
- Measurement equivalence with multiple discrete indicators
- Identify locations/scales of latent common factors and LIRs
- Conflicting advice:
- Millsap \& Tein (2004)
- Sofware defaults
- Wu \& Estabrook (2016)
- Examples using semTools::measEq.syntax() function

Review Identification Constraints in CFA Models

A Single Context

3 statistically equivalent methods to identify the arbitrary location \& scale of common factors:

- Fixed-Factor method: Set each construct's $\mu=0$ and $\sigma^{2}=1$
- Marker-Variable method: For each construct, fix a referent indicator's intercept $=0$ and factor loading $=1$
- Effects-Coding method: For each construct, constrain the mean of all intercepts $=0$ and the mean of all loadings $=1$

Additional constraints necessary with <3 indicators:

- 1 indicator: Fix residual variance (to zero or $1-\sigma_{x x}$)
- 2 indicators: Constrain loadings to equality (or both to 1), unless factor is substantially correlated with at least one other common factor

Counting Knowns \& Unknowns: 1 Indicator

In a model with only a single indicator construct, we only observe a 1×1 covariance matrix

The model-implied variance is a function of 3 parameters, only 1 of which can be estimated (resulting in $d f=1-1=0$)

- Fix $\theta_{1,1}=0$, estimate either $\lambda_{1,1}$ or $\psi_{1,1}$

Counting Knowns \& Unknowns: 2 Indicators

With 2 indicators, we observe a 2×2 covariance matrix

	X	Y
X	2.00	0.87
Y	0.87	1.50

	X	Y
X	$\lambda_{1,1} \psi_{1,1} \lambda_{1,1}+\theta_{1,1}$	
Y	$\lambda_{2,1} \psi_{1,1} \lambda_{1,1}$	$\lambda_{2,1} \psi_{1,1} \lambda_{2,1}+\theta_{2,2}$

- Must set $\lambda_{1,1}=\lambda_{2,1}$
- Optionally, both $=1$ and estimate $\psi_{1,1}$
- Estimate both $\theta_{1,1}$ and $\theta_{2,2}, d f=3-3=0$

Counting Knowns \& Unknowns: 3 Indicators

A 3-indicator model is just-identified ($d f=6-6=0$) once the latent scale is set

	X	Y	Z
X	2.00	0.87	0.67
Y	0.87	1.50	0.77
Z	0.67	0.77	2.50

	X	Y	Z
X	$\lambda_{1,1} \psi_{1,1} \lambda_{1,1}+\theta_{1,1}$		
Y	$\lambda_{2,1} \psi_{1,1} \lambda_{1,1}$	$\lambda_{2,1} \psi_{1,1} \lambda_{2,1}+\theta_{2,2}$	
\mathbf{Z}	$\lambda_{3,1} \psi_{1,1} \lambda_{1,1}$	$\lambda_{3,1} \psi_{1,1} \lambda_{2,1}$	$\lambda_{3,1} \psi_{1,1} \lambda_{3,1}+\theta_{3,3}$

Counting Knowns \& Unknowns: 4 Indicators

With ≥ 4 indicators, the model is over-identified

- Still need to set the latent scale for identification

$$
d f=10-8=2
$$

	W	X	Y	
W	$\lambda_{1,1} \psi_{1,1} \lambda_{1,1}+\theta_{1,1}$			
X	$\lambda_{2,1} \psi_{1,1} \lambda_{1,1}$	$\lambda_{2,1} \psi_{1,1} \lambda_{2,1}+\theta_{2,2}$		
Y	$\lambda_{3,1} \psi_{1,1} \lambda_{1,1}$	$\lambda_{3,1} \psi_{1,1} \lambda_{2,1}$	$\lambda_{3,1} \psi_{1,1} \lambda_{3,1}+\theta_{3,3}$	
Z	$\lambda_{4,1} \psi_{1,1} \lambda_{1,1}$	$\lambda_{4,1} \psi_{1,1} \lambda_{2,1}$	$\lambda_{4,1} \psi_{1,1} \lambda_{3,1}$	$\lambda_{4,1} \psi$

Multiple Contexts

Measure the same construct(s) in different contexts

- multiple populations or occasions, experimental conditions, members of dyads, etc.

Compare distributional parameters

- latent means, variances, correlations, directed effects
- autoregressive/cross-lagged effects, growth trajectories

Requires homogenous measurement properties across contexts

- Inference about latent covariance structure requires metric equivalence (invariance factor loadings)
- Inference about latent mean structure requires scalar equivalence (invariance of loadings and intercepts)

Testing Measurement Equivalence in CFA

Assumptions are testable with latent variable models. Typically follows a sequence from least- to most-constrained model:

- Configural invariance
- Same configuration of fixed/free parameters across contexts
- Metric equivalence (or weak invariance)
- Additionally, equal factor loadings across contexts
- Scalar equivalence (or strong invariance)
- Additionally, equal intercepts across contexts
- Strict invariance
- Additionally, equal residual variances across contexts

Compare each adjacent pair of models using likelihood ratio test (LRT; $\Delta \chi^{2}$) to test each omnibus H_{0}

Violations of Invariance

If omnibus H_{0} is rejected, individual indicators can be tested for differential item functioning (DIF)

- Only partial invariance is necessary to compare latent distributions, but DIF weakens inferences

Analogous to regression of indicators (Y) on factors (η), potentially moderated by contextual variable (e.g., group G)

$$
Y=\beta_{0}+\beta_{1} \eta+\beta_{2} G+\beta_{3}(\eta \times G)+\varepsilon
$$

- Violation of metric invariance implies different loadings ($\beta_{3} \neq 0$): nonuniform DIF
- Don't constrain intercept for item with nonuniform DIF
- Violation of scalar invariance implies different intercepts ($\beta_{3}=0$, but $\beta_{2} \neq 0$): uniform DIF

No Invariance Constraints (Each Latent $\mu=0$)

Different indicator means, even holding factor constant

Invariance Holds

Different indicator means must be due to different factor means

Trading Constraints: Identification v. Invariance

Using a marker variable (or effects coding), parameters of latent distributions are already freely estimated without being constrained to equality across contexts

- conditional on equivalence of 1 (or average) loading \& intercept
- not actually comparable until ≥ 2 indicators are constrained

Using the fixed-factor approach, latent distributions have fixed means and variances for identification

- When loadings are constrained, must free unnecessary identification constraints on latent variances
- If not, test conflates equal loadings + latent variances
- When intercepts are constrained, must free unnecessary identification constraints on latent means
- If not, test conflates equal intercepts + latent means

Item Factor Analysis

Extended Common Factor Model

Accommodate discrete data using a probit link

- Assume the linear effects in the common-factor model apply to multivariate normal latent item-responses (LIRs)
- LIRs linked to observed indicators via a threshold model

Figure 2: 2-factor CFA model with discrete indicators.

Item Factor Analysis

$$
\begin{gathered}
y^{*}=\nu+\lambda \eta+\theta \\
y=\left\{\begin{array}{l}
0 \text { if }-\infty<y^{*} \leq \tau_{1} \\
1 \text { if } \tau_{1}<y^{*} \leq \tau_{2} \\
\cdots \\
k \text { if } \tau_{k}<y^{*} \leq \infty
\end{array}\right. \\
E\left(y^{*}\right)=\nu+\Lambda \alpha
\end{gathered}
$$

$$
\operatorname{Var}\left(y^{*}\right)=\Lambda \Psi \Lambda^{\prime}+\Theta
$$

Linear factor model reproduces the estimated polychoric correlations among the LIRs (y^{*})

- Polychorics estimated assuming LIR $\mu=0$ and $\sigma=1$

Threshold Model for 3-Category Indicator

Threshold $=z$ score beyond which subjects enter a higher category

Interpret Thresholds

Suppose this 0-2 scale was used to measure perceived pain among patients with a chronic condition

- 0 (tolerable), 1 (uncomfortable), 2 (unbearable)

If this variable were treated as continuous, the mean would be a weighted sum of the values of the categories:

$$
M=0.21 \times 0+0.48 \times 1+0.31 \times 2=1.1
$$

Imagine after experience with their condition, patients' threshold for pain increases, resulting in less perceived pain

- Higher thresholds imply lower means (more subjects in lower categories)

Interpret Thresholds

Treating the variable as ordinal, the probit model posits a normally distributed LIR underlying the observed discrete response

- If we fix the 2 thresholds (e.g., to 0 and 1, as in LISREL), we can estimate the LIR's μ and σ
- If we fix $\mu=0$ and $\sigma=1$ (as in Mplus and lavaan), we can estimate the thresholds

These are alternative identification constraints, but statistically equivalent models

- i.e., same observed proportions in each category, implied by location(s) of threshold(s) in the latent distribution

Thresholds as a Measurement Model

In CFA, individual differences on latent factors are extrapolated from multiple observed indicators

- μ and σ are fixed or set relative to an indicator

Analogously, individual differences on an observed discrete indicator are used to extrapolate about individual differences on the underlying LIR

- Likewise, μ and σ are fixed or set relative to thresholds

The more categories in our scale, the more information we have about how individuals (co)vary on the underlying LIR(s)

- As in CFA, the number of parameters we can estimate is limited by the number of summary statistics we observed (i.e., thresholds)

Identifying the LIR Underlying a Binary Item

With ≥ 2 thresholds, we could estimate both μ and σ, but a binary item requires additional constraints for identification

- Similar to measuring a latent factor with only 1 or 2 indicators, there is not enough information from only 1 threshold to estimate both μ and σ

If we fix the threshold (e.g., $\tau=0$), we can estimate either μ or σ, but not both

- Fixing either $\tau=0$ or $\mu=0$ to estimate the other parameter, the estimates would be the same magnitude but different signs
- To estimate σ, we must fix $\tau \neq \mu$ because σ is extrapolated from the chosen distance between τ and μ

Numerical Examples

Generate Longitudinal Items from a Bivariate LIR

```
N <- 1000
# mean difference = 0.8
mu <- c(wave1 = 0, wave2 = 0.8)
# autocorrelation = 0.7 / sqrt(2) = 0.495
Sigma <- matrix(c(1, .7, .7, 2), nrow = 2)
set.seed(123)
dat <- data.frame(MASS::mvrnorm(N, mu, Sigma))
# binary (1 threshold)
dat$y2w1 <- as.numeric(dat$wave1 > -0.5)
dat$y2w2 <- as.numeric(dat$wave2 > -0.5)
# ternary (2 thresholds)
dat$y3w1 <- dat$y2w1 + (dat$wave1 > 0.5)
dat$y3w2 <- dat$y2w2 + (dat$wave2 > 0.5)
# polytomous (3 thresholds)
dat$y4w1 <- dat$y3w1 + (dat$wave1 > 1)
dat$y4w2 <- dat$y3w2 + (dat$wave2 > 1)
```


Specify Model Parameters for Binary Items

```
library(lavaan)
mod2 <- '
## LIR means
    y2w1 ~ mean1*1
    y2w2 ~ mean2*1
## LIR (co)variances
    y2w1 ~~ var1*y2w1 + y2w2
    y2w2 ~ ~ var2*y2w2
## thresholds link LIRs to observed items
    y2w1 | thr1*t1
    y2w2 | thr2*t1
I
```

Each parameter is labeled so that different identification constraints can be applied when fitting the model to data

Fit Model with Standard-Normal LIR Distributions

The default method in Mplus and lavaan is to fix the LIR intercepts to 0 and the marginal (total) LIR variance to 1

- The default is called the "delta" parameterization
- Δ scaling factor $=$ the reciprocal of LIR's SD
- Request the alternative "theta" parameterization to fix the conditional (residual) LIR variance to 1
constr2z <-
\#\# Wave 1
mean1 == 0 ; var1 == 1
\#\# Wave 2
mean2 == 0 ; var2 == 1
fit2z <- lavaan(mod2, data = dat, constraints = constr2z, ordered $=c(" y 2 w 1 ", " y 2 w 2 ")$,
parameterization = "theta")

Fit Model with Standard-Normal LIR Distributions

Fix Thresholds to $\tau=0$ Instead

In lavaan it is possible to free the LIR intercepts

- In Mplus phantom constructs would need to be specified

```
constr2t <-
## Wave 1
    thr1 == 0 ; var1 == 1
## Wave 2
    thr2 == 0 ; var2 == 1
```

fit2t <- lavaan(mod2, data = dat, constraints = constr2t,
ordered = c("y2w1","y2w2"),
parameterization = "theta")

Notice the estimated means are the same magnitude (but opposite sign) as the previously estimated thresholds

- Recall these are statistically equivalent interpretations

Fix Thresholds to $\tau=0$ Instead

\#\#
\#\# Intercepts:

\#\#			Estimate
\#\#	y2w1	(men1)	0.468
\#\#	y2w2	(men2)	0.927

\#\#
\#\# Thresholds:

| \#\# | | Estimate |
| :--- | :--- | :--- | ---: |
| \#\# | y2w1\|t1 $($ thr1) | 0.000 |
| \#\# | y2w2\|t1 $($ thr2) | 0.000 |

\#\#
\#\# Variances:

\#\#			Estimate
\#\#	y2w1	$(\operatorname{var} 1)$	1.000
\#\#	y2w2	$(\operatorname{var} 2)$	1.000

Compare Fixed Means to Fixed Thresholds

Equality Constraints on Thresholds

Fixing an LIR's $\mu=0$ and $\sigma=1$ is analogous to fixed-factor identification constraints. Imposing equality constraints on thresholds (the LIR's measurement model) would only represent a hypothesis of measurement equivalence if any unnecessary identification constraint(s) were freed.
constr2e <-
thr1 == thr2 \# measurement equivalence constraint
mean1 == 0 \# identification constraints at Wave 1
var1 == 1
var2 == 1 \# identification constraint at Wave 2
,
fit2e <- lavaan(mod2, data = dat, constraints = constr2e, ordered = c("y2w1", "y2w2"),
parameterization = "theta")

Equality Constraints on Thresholds

\#\#			
\#\#	Intercepts:		
\#\#		Estimate	
\#\#	y2w1	(men1)	-0.000
\#\#	y2w2	(men2)	0.459
\#\#			
\#\#	Thresholds:		
\#\#		Estimate	
\#\#	y2w1\|t1	$($ thr1)	-0.468
\#\#	y2w2\|t1	$($ thr2)	-0.468
\#\#			
\#\# Variances:			
\#\#			Estimate
\#\#	y2w1	(var1)	1.000
\#\#	y2w2	(var2)	1.000

Interpret Time-2 Mean Relative to Wave 1

Fix Thresholds and Means to Estimate Variances

We have seen it is equivalent to interpret the difference in observed distributions (fewer zeros / more ones at Wave 2) as:

- A lower threshold or a higher mean at Wave 2

With only 2 categories, another equivalent interpretation would be that subjects are more homogenous at Wave 2

- Fix both τ and μ to different arbitrary values to estimate σ^{2} constr2v <-
\#\# Wave 1
thr1 == -0.5 ; mean1 == 0.5
\#\# Wave 2
thr2 == -0.5 ; mean2 == 0.5
fit2v <- lavaan(mod2, data = dat, constraints = constr2v,
ordered = c("y2w1","y2w2"),
parameterization = "theta")

Fix Thresholds and Means to Estimate Variances

Compare Estimated Thresholds to Estimated Variances

Specify Model Parameters for Ternary Items

The same principles apply to items with >2 categories, but there are enough thresholds to trade for both μ and σ

```
mod3 <- '
## LIR means
    y3w1 ~ mean1*1
    y3w2 ~ mean2*1
## LIR (co)variances
    y3w1 ~~ var1*y3w1 + y3w2
    y3w2 ~ ~ var2*y3w2
## thresholds link LIRs to observed items
    y3w1 | thr1.w1*t1 + thr2.w1*t2
    y3w2 | thr1.w2*t1 + thr2.w2*t2
I
```


Fit Models with Free and Equated Thresholds

```
constr3z <- '
mean1 == 0 ; var1 == 1 # Wave 1 identification constraints
mean2 == 0 ; var2 == 1 # Wave 2 identification constraints
I
fit3z <- lavaan(mod3, data = dat, constraints = constr3z,
    ordered = c("y3w1","y3w2"),
    parameterization = "theta")
constr3e <-
## Wave 1 identification constraints
    mean1 == 0 ; var1 == 1
## measurement equivalence constraints
    thr1.w1 == thr1.w2
    thr2.w1 == thr2.w2
'
fit3e <- lavaan(mod3, data = dat, constraints = constr3e,
    ordered = c("y3w1", "y3w2"),
    parameterization = "theta")
```


Free Thresholds (Standard-Normal LIRs)

\#\#

\#\# Intercepts:

\#\#			Estimate
$\# \#$	y3w1	(men1)	0.000
$\# \#$	y3w2	(men2)	0.000

\#\#
\#\# Thresholds:

\#\#		Estimate
\#\#	y3w1\|t1 (t1.1)	-0.468
\#\#	y3w1\|t2 (t2.1)	0.586
\#\#	y3w2\|t1 (t1.2)	-0.927
\#\#	y3w2\|t2 (t2.2)	-0.238

\#\#
\#\# Variances:

\#\#			Estimate
\#\#	y3w1	$(\operatorname{var} 1)$	1.000
\#\#	y3w2	$(\operatorname{var} 2)$	1.000

Equated Thresholds to Estimate μ and σ^{2} at Wave 2

\#\#
\#\# Intercepts:

\#\#		Estimate	
\#\#	y3w1	(men1)	0.000
\#\#	y3w2	(men2)	0.949

\#\#
\#\# Thresholds:

\#\#			Estimate
\#\#	y3w1\|t1	$(\mathrm{t} 1.1)$	-0.468
\#\#	y3w1\|t2	$(\mathrm{t} 2.1)$	0.586
\#\#	y3w2\|t1	$(\mathrm{t} 1.2)$	-0.468
\#\#	y3w2\|t2	$(\mathrm{t} 2.2)$	0.586

\#\#
\#\# Variances:

\#\#			Estimate
\#\#	y3w1	$(\operatorname{var} 1)$	1.000
\#\#	y3w2	$(\operatorname{var} 2)$	2.338

Interpret Time-2 Distribution Relative to Wave 1

Specify Model Parameters for 4-Category Items

When we can constrain >2 thresholds for an item:

- We can estimate both μ and σ
- There are $d f$ left over to test H_{0} that thresholds are equivalent (without additionally assuming equivalence of μ and σ)
$\bmod 4<-$
\#\# LIR means
y4w1 ~ mean1*1
y4w2 ~ mean2*1
\#\# LIR (co)variances
y4w1 ~~ var1*y4w1 + y4w2
y4w2 ~~ var2*y4w2
\#\# thresholds link LIRs to observed items
y4w1 | thr1.w1*t1 + thr2.w1*t2 + thr3.w1*t3
y4w2 | thr1.w2*t1 + thr2.w2*t2 + thr3.w2*t3

Fit Models with Free and Equated Thresholds

```
constr4z <- '
mean1 == 0 ; var1 == 1 # Wave 1 identification constraints
mean2 == 0 ; var2 == 1 # Wave 2 identification constraints
I
fit4z <- lavaan(mod4, data = dat, constraints = constr4z,
    ordered = c("y4w1","y4w2"),
    parameterization = "theta")
constr4e <- ' ## Wave 1 identification constraints
    mean1 == 0 ; var1 == 1
## measurement equivalence constraints
    thr1.w1 == thr1.w2
    thr2.w1 == thr2.w2
    thr3.w1 == thr3.w2
fit4e <- lavaan(mod4, data = dat, constraints = constr4e,
    ordered = c("y4w1", "y4w2"),
    parameterization = "theta")
```


Compare Models with Free and Equated Thresholds

These models are not statistically equivalent

- The equal-thresholds model is more restrictive than the standard-normal model
lavTestLRT(fit4z, fit4e)
\#\# Scaled Chi-Squared Difference Test (method = "satorra. 2 \#\#
\#\# lavaan NOTE:
\#\# The "Chisq" column contains standard test statistics \#\# robust test that should be reported per model. A rol \#\# test is a function of two standard (not robust) stat
\#\#

\#\#	Df AIC BIC Chisq Chisq diff	Df $\operatorname{diff} \operatorname{Pr}(>C h i s q)$		
\#\# fit4z	0	0.00		
\#\# fit4e 1	0.91	3.46	1	0.063 .

\#\# ---
\#\# Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0..

Compare Models with Free and Equated Thresholds

Implications for Measurement Equivalence with Multiple Discrete Indicators

Previous Advice: Millsap \& Tein (2004)

When LIRs are endogenous (e.g., indicators of common factors)

- μ and σ of each LIR becomes conditional on common factor
- i.e., an intercept ν and residual variance θ

Minimal identification constraints for configural model:

- Equate 1 threshold per item to identify residual variances
- Fix residual variances to 1 in reference group
- Fix loading of marker variable to identify factor variance
- All intercepts fixed to zero
- Equate additional threshold of marker variable to identify common factor means
- Fix common factor mean to 0 in reference group
- If binary, instead fix $\theta=1$ for all groups

Test invariance only by imposing equality constraints

Issues with Millsap \& Tein's (2004) Advice

Handles all identification constraints as a single set

- More complicated than recognizing identification of LIR and common factor scales/locations as independent issues

Equality of loadings tested on the assumption of equal intercepts

- Violates hierarchical principle

Equality of intercepts assumed (never tested)

- Conflates equivalence of thresholds with strong invariance
- If equivalence of thresholds fails, it might only represent a constant shift in all thresholds (equivalent to different intercepts)

Previous Advice: Software Defaults

Researchers often rely on software defaults:

- LISREL fixes first 2 thresholds to 0 and 1 , estimates ν and θ
- For binary items, fix $\tau=0$ and $\theta=1$
- Any estimated thresholds assumed equal across groups
- Mplus fixes $\nu=0$ and $\theta=1$, estimates all thresholds
- Analogous to fixed-factor approach
- By default, equates thresholds across groups, fixes $\theta=1$ only in reference group, so users must manually specify configural models
- lavaan defaults are similar to Mplus, but without assuming equivalence across groups

Issues with Software Defaults

These are statistically equivalent approaches only without equality constraints imposed across contexts (e.g., groups or occasions)

- Thus, LISREL and Mplus configural models will not be equivalent when items have >3 categories

Some levels of invariance cannot be tested

- thresholds in LISREL
- intercepts in Mplus, unless phantom constructs are specified for each LIR

Tricking the software is tedious, prone to human error

- See semTools: :measEq.syntax() R function for help

Alternative Perspective

If we view a LIR as a first-order latent variable ...

- measured by a single discrete item
- its thresholds are measurement-model parameters
... we can consider identification constraints separately for LIRs and common factors. Test equivalence of thresholds first
- Analogously, Chen et al. (2005) recommended testing equivalence of first-order loadings before second-order loadings
- https://doi.org/10.1207/s15328007sem1203_7

Multiple LIRs then measure (higher-order) common factor(s)

- Test remaining measurement parameters in the usual sequence
- Same considerations about trading identification vs. invariance constraints

Trading Constraints: Identification v. Invariance

Concurs with Wu \& Estabrook (2016), who recommended freeing unnecessary identification constraints when any measurement parameters were equated to test equivalence

- Otherwise, tests make overly strict assumptions about other parameters (e.g., equivalence of ν and θ)

Step 1: Test equivalence of thresholds

- Free identification constraints ($\nu=0$ and $\theta=1$), except for 1 reference category (e.g., first group/occasion)
- analogous to fixed factor approach
- Requires ≥ 4 categories to do more than trade $d f$
- 2 thresholds used to identify LIR's ν and θ
- any extras buy $d f$ when constrained to equality
- If binary: free ν, keep $\theta=1$

Trading Constraints: Identification v. Invariance

Step 2: Test equivalence of loadings

- Free identification constraints on common factor variances, except for 1 reference category

Step 3: Test equivalence of intercepts

- Free identification constraints on common factor means, except for 1 reference category
- $\nu=0$ in reference category for identification, so impose equivalence by fixing $\nu=0$ in all contexts
- If binary: θ can now be freed (less constrained than Step 1)

Step 4: Test equivalence of residual variances

- $\theta=1$ in reference category for identification, so impose equivalence by fixing $\theta=1$ in all contexts

Special Considerations about Equivalent Models

Ternary items: Trade only 2 thresholds for ν and θ

- Threshold invariance is equivalent to configural invariance
- Solution: Consider threshold invariance to be Step 1

Binary items: Only 1 threshold to constrain

- First, free only ν
- Equivalent to configural model
- After constraining λ then ν, free θ (and factor mean)
- Less constrained than threshold invariance!
- Solution: Simultaneously constrain thresholds, loadings, and intercepts (and free θ) to test strong (vs. configural) invariance
- Cannot distinguish between sources of violation

semTools::measEq.syntax() Examples

Install and Load R Package

```
# stable version on CRAN
install.packages("semTools")
# development version on GitHub
devtools::install_github("simsem/semTools/semTools")
# load package
library(semTools)
# find help-page examples
?measEq.syntax
```


Thank you for your attention

Questions?

Some suggested reading:

- Muthen \& Asparouhov (2002) Mplus web note 4
- www.statmodel.com/download/webnotes/CatMGLong.pdf
- Mehta \& Neale (2004)
- http://dx.doi.org/10.1037/1082-989X.9.3.301
- Millsap \& Tein (2004)
- http://dx.doi.org/10.1207/S15327906MBR3903_4
- Kamata \& Bauer (2008)
- http://dx.doi.org/10.1080/10705510701758406
- Wu \& Estabrook (2016)
- http://dx.doi.org/10.1007/s11336-016-9506-0

